The Complete Python and Machine Learning For Financial Analysis { Udemy Coupon 100% Off }

udemy-free-course-coupon

COURSE AUTHOR –

Dr. Ryan Ahmed, Ph.D., MBA, Kirill Eremenko, Hadelin de Ponteves, SuperDataScience Team, Mitchell Bouchard.

 

The Complete Python &Machine Learning for Financial Analysis

 

What you’ll learn:-

  1. Master Python 3 programming fundamentals for Data Science and Machine Learning with focus on Finance.
  2. Understand how to leverage the power of Python to apply key financial concepts such as calculating daily portfolio returns, risk and Sharpe ratio.
    Understand the theory and intuition behind Capital Asset Pricing Model (CAPM), Markowitz portfolio optimization, and efficient frontier.
  3. Apply Python to implement several trading strategies such as momentum-based and moving average trading strategies.
  4. Understand how to use Jupyter Notebooks for developing, presenting and sharing Data Science projects.
  5. Learn how to use key Python Libraries such as NumPy for scientific computing, Pandas for Data Analysis, Matplotlib for data plotting/visualization, and Seaborn for statistical plots.
  6. Master SciKit-Learn library to build, train and tune machine learning models using real-world datasets.
  7. Apply machine and deep learning models to solve real-world problems in the banking and finance sectors such as stock prices prediction, security news sentiment analysis, credit card fraud detection, bank customer segmentation, and loan default prediction.
  8. Understand the theory and intuition behind several machine learning algorithms for regression tasks (simple/multiple/polynomial), classification and clustering (K-Means).
  9. Assess the performance of trained machine learning regression models using various KPI (Key Performance indicators) such as Mean Absolute Error, Mean Squared Error, and Root Mean Squared Error intuition, R-Squared intuition, and Adjusted R-Squared.
  10. Assess the performance of trained machine learning classifiers using various KPIs such as accuracy, precision, recall, and F1-score.
  11. Understand the underlying theory, intuition and mathematics behind Artificial Neural Networks (ANNs), Recurrent Neural Networks (RNNs) and Long Short Term Memory Networks (LSTM).
  12. Train ANNs using back propagation and gradient descent algorithms.
    Optimize ANNs hyper parameters such as number of hidden layers and neurons to enhance network performance.
  13. Master feature engineering and data cleaning strategies for machine learning and data science applications.

 

 

Course Price :
₹12,800 Discount 100% off
Apply this Coupon :-
CLUB11

 

Course Link :-  Enroll Now

Scroll to Top
%d bloggers like this: